

Agile and Secure Manufacturing on the Field Level

Contact: Hans-Peter Huth (Author) Dr. Amine M. Houyou (Project Coordinator) Siemens AG Corporate Technology, hans-peter.huth(at)siemens.com, amine.houyou(at)siemens.com <u>http://www.iot-at-work.eu/</u>

IoT@Work Project

EU funded Project

- Duration: 3 years
- Approx. 3.5 Mio € Funding (Total Budget ~ 5.9 Mio €)
- Started on June 2010
- 6 Partners from Industry and Research

SIEMENS

n Center

FIAT GROUP

ONDON

TY UNIVERSITY

Scenarios & requirements

Configuration Management

Project coordinator

network & security

Security

pilot

Software engineering & middleware aspects

Software engineering system modelling

Vision

 IoT Enabling Agile Manufacturing Systems

Automation & engineering

IoT - our definition

Internet of Things

Connected Things & Services

IoT@Work Hypothesis:

- A focus on interactions between embedded devices, machines, things
 - Communication between Things and Services (Network as a service)
 - One important application domain "Factory Automation"
- The IoT is an enabler to *flexibility and agility* of production systems

IoT in Industry Automation

General Goals for Automation Environments

- Reduce engineering costs
- Reduce maintenance costs and system downtime
- Increase flexibility and reduce re-configuration costs
- Reduce infrastructure costs

IoT@Work = (Reliable communication) + (Secure Plug&Work) + (Web-technologies)

Approach

- **One network infrastructure** with standardized Internet protocols
- Seamless inter communication of domains and services, e.g. enterprise management, office network, remote maintenance, automation
- Internet technologies and Web technologies down to the field
- Ease the commissioning process with **auto-configuration** mechanisms

Requirements

Industrial Automation Requirements

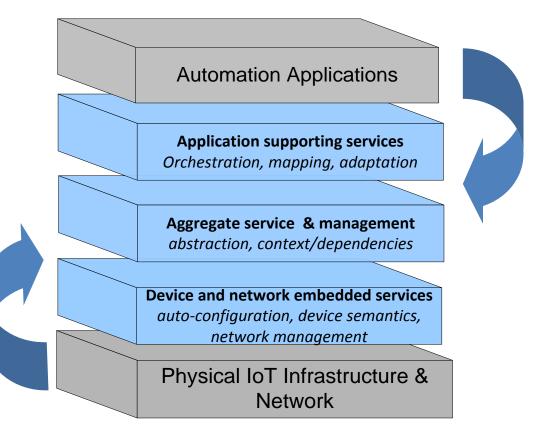
from extensive study of real world scenarios

Functional

- decoupling of applications and underlying infrastructure
- decoupling of stakeholders
- security: device integrity, network access control, application capabilities

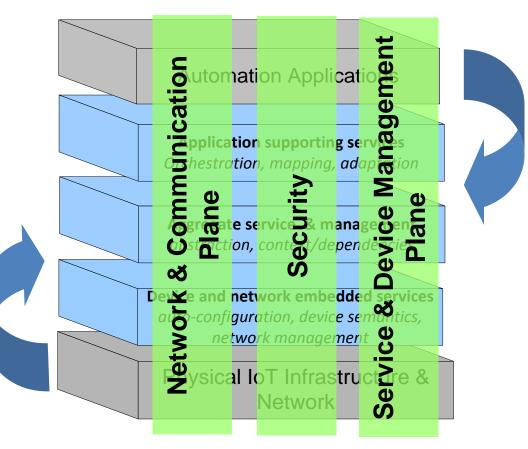
Non-Functional

- industrial performance & reliability
- scalable to thousands of devices
- Iow configuration efforts
- dependable and predictable


IoT@Work Architecture Approach

Tomorrow

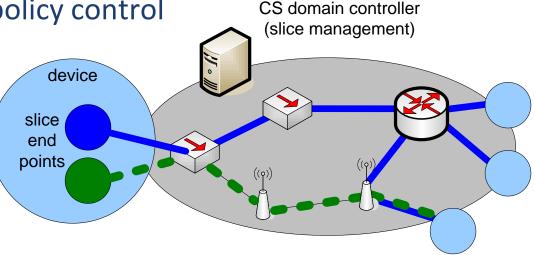
- Planning of applications and resources decoupled
- Auto configuration
- Far less efforts for configuration and commissioning
- Enhanced flexibility


IoT@Work Architecture Approach

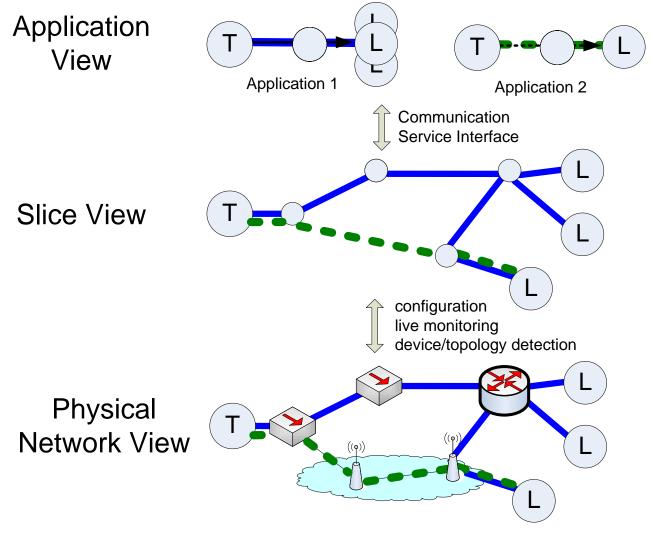
Tomorrow

- Planning of applications and resources decoupled
- Auto configuration
- Far less efforts for configuration and commissioning
- Enhanced flexibility

Planes to achieve inter-layer information flow

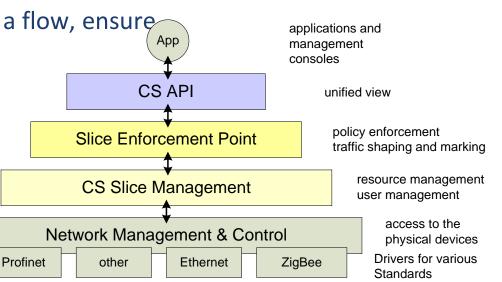

- Abstractions (e.g., semantics, localization).
- Optimizations (e.g., scalable messaging, caching) or other commonly used services (e.g., monitoring, eventing).
- Security
- Components include:
 - Cross layer functions: monitoring, discovery, logging, presence, ...
 - The Event Notification Service (ENS)
 - Capability & Security Management
 - Directory Service

Network and Communication Services:


- Localization of devices in the network (topological)
- **Connectivity** services with support of:
 - reliability i.e. fast failure recovery
 - scalability support aggregates
 - network access control & policy control
 - QoS
- Resource Management
- Network Virtualization
- Self-Configuration

Network Abstraction

- network abstraction for the applications
- slice = virtualisation + resource management + security
- field level allows reuse of Industrial Standards
- live -management done from the slice layer



The IoT@Work Slice Concept

- slice a definition
 - virtualisation + resource management + security
 - network protocol independent view
 - manages QoS, policy control and resilience
 - i.e. enforce maximum bandwidth for a flow, ensure minimum
 - mapping to field level technologies:
 - i.e. Profinet, AVB, VLAN and more
 - automatic commissioning,
 - i.e. on-the-fly VLAN configuration

intelligent live management

- optimisations, failure handling
- autonomous operation but <u>based on rules from the</u> <u>planning phase</u>

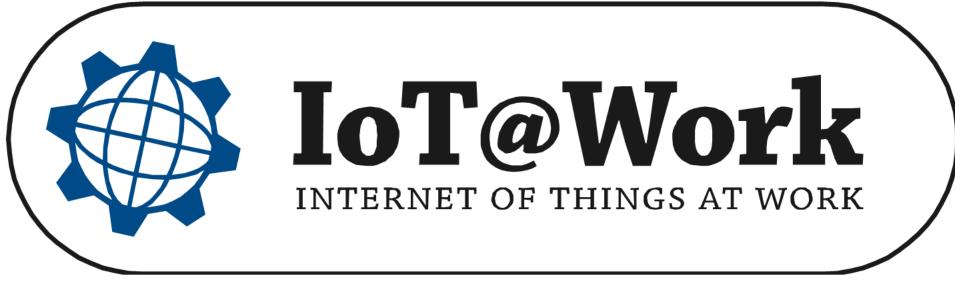
Field Level

Auto Configuration of Automation Devices

- Service oriented architecture for industrial Ethernets using OPC-UA (inIT)
 - provide auto-configuration for automation devices
 - re-use the well known OPC-UA standard
 - i.e. for initial device configuration after boot
 - proof-of-concept for Profinet IO

Slice Interface on Devices

- allows for different slices per application
- slice auto-configuration controlled by boot-scripts and the slice manager



- IoT@Work applies and adopts IoT for Industrial Automation
- Evolve current Industrial Standards towards more flexibility, auto-configuration and higher security
- Cornerstones:
 - virtualisation integrating resource management and security
 - live network management
 - decoupling planning, commissioning and operation
 - auto-configuration on all levels while still staying predictable and planable

Conclusion

Interesting?

more info: www.iot-at-work.eu

Thank You Hans-Peter Huth, Siemens AG

